基本信息:
姓名:秦承志
职称:副教授
电子邮箱:qinchengzhi@hust.edu.cn
办公地址:华中科技大学 逸夫科技楼北804
通讯地址:湖北省武汉市洪山区珞喻路1037号430074,华中科技大学物理学院
谷歌学术主页:https://scholar.google.com/citations?hl=en&user=vzziJUQAAAAJ
超快光学实验室网站:http://ufolab.phys.hust.edu.cn/
教育背景:
2010/09-2014/06 华中科技大学光学与电子信息学院 光电信息工程学士学位
2014/09-2019/06 华中科技大学物理学院 光学博士学位
研究经历:
2019/07-2019/10 武汉光电国家研究中心 国家博士后创新人才支持计划
2019/11-2021/04 美国德克萨斯农工大学(Texas A&M University)航天航空系 博士后
2021/05-2021/06 武汉光电国家研究中心 国家博士后创新人才支持计划
2021/07-至今 华中科技大学物理学院 副教授
主持科研项目:
国家自然科学基金 面上项目(No.12474381, 53万, 2025.01 ~ 2028.12);
国家自然科学基金 青年科学基金 (No.12204185, 30万, 2023.01 ~ 2025.12);
国家自然科学基金 理论物理专项 (No.11947209, 18万, 2020.01 ~ 2020.12);
博士后创新人才支持计划 (No. BX20190129, 20万, 2019.07 ~ 2021.06);
博士后科学基金面上项目一等资助 (No. 2019M660180, 12万, 2019.12 ~ 2021.06);
湖北省自然科学基金 面上项目(No. 2022CFB036, 5万, 2022.10 ~ 2024.10)。
奖励和荣誉称号:
2024年入选华中卓越学者 卓越青年学者II;
2023年入选华中科技大学重大学术进展,题为《合成维度光子调控技术及应用》,第三完成人;
2022年入选湖北省“楚天学子”人才称号;
2019年入选博士后创新人才支持计划(博新计划)。
研究方向及其成果:
长期从事光子合成维度、拓扑光子学和非厄米光子学实验和理论研究,主要亮点成果包括:
(1)建立并论证了移动光学规范势的离散时间折射机制,首次实现时域古斯-汉森位移的测量;(2)提出频域光子规范势概念,发展了基于规范势的频谱调控和频域布洛赫振荡实时测量技术;(3)提出基于光子磁通量的反宇称-时间对称(Anti-PT)相变机制和赝自旋-轨道耦合机制,并用于实现任意效率的光子通道隧穿效应和自旋锁定的光子路由效应。在国际重要物理和光学期刊上发表论文40余篇;其中第一作者13篇,共同第一作者6篇,通讯作者6篇;包括第一作者Phys. Rev. Lett. 2篇,Nat. Commun. 1篇;共同通讯Science Advances 1篇,唯一通讯Laser Photonics Rev 1篇;共同第一作者Nat. Commun. 2篇,PNAS 1篇,Light: Sci. & Appl. 1篇。被Science, Nat. Photonics, Rev. Mod. Phys., Phys. Rev. Lett.多次正面引用,总引用1200余次。
代表性论文:
[26] C. Qin†, H. Ye†, S. Wang†, L. Zhao, M. Liu, Y. Li, X. Hu, C. Liu, B. Wang*, S. Longhi*, and P. Lu*, “Observation of discrete-light temporal refraction by moving potentials with broken Galilean invariance,” Nat. Commun, 15, 5444 (2024). (†表示第一作者, *表示通讯作者, 下同)
[25] C. Qin†, S. Wang†, B. Wang*, X. Hu, C. Liu, Y. Li, L. Zhao, H. Ye, S. Longhi*, and P. Lu*, “Temporal Goos-Hänchen Shift in Synthetic Discrete-Time Heterolattices,” Phys. Rev. Lett. 133, 083802 (2024).
[24] C. Qin†, F. Zhou†, Y. Peng†, D. Sounas, X. Zhu, B. Wang*, J. Dong*, X. Zhang, A. Alù* and P. Lu*, “Spectrum Control through Discrete Frequency Diffraction in the Presence of Photonic Gauge Potentials,” Phys. Rev. Lett. 120, 133901 (2018).
[23] C. Qin, B. Wang*, Shanhui Fan*, and P. Lu*, “Gauge-Flux-Induced Anti-PT Phase Transitions for Extreme Control of Channel-Drop Tunneling,” Laser & Photonics Reviews 18, 4 (2024).
[22] C. Qin, A. Alù, and Z. J. Wong*, “Pseudospin-Orbit Coupling for Chiral Light Routings in Gauge-Flux-Biased Coupled Microring Resonators,” ACS photonics 9, 586 (2022).
[21] S. Wang, C. Qin*, L. Zhao, H. Ye, S. Longhi*, P. Lu*, and B. Wang*, “Photonic Floquet Landau-Zener tunneling and temporal beam splitters,” Sci. Adv. 9, 1 (2023).
[20] H. Ye†, C. Qin†, S. Wang†, L. Zhao, W. Liu, B. Wang*, S. Longhi*, and P. Lu*, PNAS 120, e2300860120 (2023).
[19] S. Wang†, C. Qin†, W. Liu†, B. Wang*, F. Zhou, H. Ye, L. Zhao, J. Dong, X. Zhang, S. Longhi*, and P. Lu*, “High-order dynamic localization and tunable temporal cloaking in ac-electric-field driven synthetic lattices,” Nat. Commun. 13, 7653 (2022).
[18] Y. Peng†, C. Qin†, D. Zhao†, Y. Shen, X. Xu, M. Bao, H. Jia*, and X. Zhu*, “Experimental demonstration of anomalous Floquet topological insulator for sound,” Nat. Commun. 7, 13368 doi: 10.1038/ncomms13368 (2016).
[17] H. Ye†, S. Wang†, C. Qin*, L. Zhao, X. Hu, C. Liu, B. Wang, and P. Lu, Laser & Photonics Reviews 22, 16 (2023). (唯一通讯)
[16] X. Hu†, S. Wang†, C. Qin*, C. Liu, L. Zhao, Y. Li, H. Ye, W. Liu, S. Longhi*, B. Wang*, and P. Lu*, “Observing the collapse of super-Bloch oscillations in strong-driving photonic temporal lattices”, Advanced Photonics 6, 4 (2024).
[15] H. Chen†, N. Yang†, C. Qin†, W. Li, B. Wang*, T. Han, C. Zhang*, W. Liu, K. Wang, H. Long, X. Zhang, and P. Lu*, “Real-time observation of frequency Bloch oscillations with fibre loop modulation,” Light Sci. Appl. 10, 48 (2021).
[14] C. Qin, B. Wang, Z. J. Wong, S. Longhi, and P. Lu, “Discrete diffraction and Bloch oscillations in non-Hermitian frequency lattices induced by complex photonic gauge fields,” Phys. Rev. B, 101, 064303 (2020).
[13] C. Qin, Y. Peng, Y. Li, X. Zhu, B. Wang, C. Qiu, and P. Lu, “Spectrum Manipulation for Sound with Effective Gauge Fields in Cascading Temporally Modulated Waveguides,” Phys. Rev. Appl. 11, 064012 (2019).
[12] C. Qin, L. Yuan, B. Wang, S. Fan, and P. Lu, “Effective electric-field force for a photon in a synthetic frequency lattice created in a waveguide modulator,” Phys. Rev. A 26, 063838 (2018).
[11] C. Qin, Q. Liu, B. Wang, and P. Lu, “Photonic Weyl phase transition in dynamically modulated brick-wall waveguide arrays,” Opt. Express, 26, 20929-20943 (2018).
[10] C. Qin, B. Wang, and P. Lu, “Frequency diffraction management through arbitrary engineering of photonic band structures,” Opt. Express, 26, 25721-25735 (2018).
[9] C. Qin, B. Wang, H. Long, K. Wang, and P. Lu, “Nonreciprocal Phase Shift and Mode Modulation in Dynamic Graphene Waveguides,” Journal of Lightwave Technology, 34, 3877-3883 (2016).
[8] C. Qin, B. Wang, H. Long, K. Wang, and P. Lu, “Bloch mode engineering in graphene modulated periodic waveguides and cavities,” J. Opt. Soc. Am. B, 32, 1748-1753 (2015).
[7] C. Qin, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Low-loss plasmonic supermodes in graphene multilayers,” Opt. Express, 22, 25324-25332 (2014).
[6] L. Zheng, C. Qin*, X. Zhu*, S. Chen, L. Zhao, Z. Liu, W. Liu, B. Wang*, and P. Lu, “Acoustic Weyl semimetals in synthetic dimensions”, Phys. Rev. Appl. 21, 054048 (2024).
[5] Lu Ding†, C. Qin†, F. Zhou, L. Yang, W. Li, F. Luo, J. Dong, B. Wang, and P. Lu, “Efficient Spectrum Reshaping with Photonic Gauge Potentials in Resonantly Modulated Fiber-loop Circuits,” Phys. Rev. Appl. 12, 024027 (2019).
[4] Q. Liu†, C. Qin†, B. Wang, and P. Lu, “Scattering singularities of optical waveguides under complex modulation,” Phys. Rev. A, 101, 033818 (2020).
[3] Z. Liu, C. Qin*, L. Zheng, S. Ren, B. Wang* and P. Lu*, “Frequency manipulation of topological surface states through Weyl phase transitions,” Opt. Lett., 46, 5719-5722 (2021).
[2] W. Li, C. Qin*, T. Han, H. Chen, B. Wang*, and P. Lu*, “Bloch oscillations in photonic spectral lattices through phase-mismatched four-wave mixing,” Opt. Lett., 44, 5430-5433 (2019).
[1] Q. Liu, S. Li, B. Wang, S. Ke, C. Qin, K. Wang, W. Liu, D. Gao, P. Berini, and P. Lu, “Efficient Mode Transfer on a Silicon Chip by Encircling Moving Exceptional Points,” Phys. Rev. Lett. 124, 153903 (2020).
讲授课程:大学物理、创新物理实验(近代物理实验)